地上からの全天カメラによる多波長観測は、オーロラの形態などを知るために重要です。極地研究所は第X期重点研究(オーロラXプロジェクト:2022~27年度)を進めています。極冠地域では太陽風と大気の直接的な相互作用が起こり、数百eV(太陽風)からMeV(SEP)までの広範なエネルギー範囲で電子とイオンの降下が発生します。
私たちは、このプロジェクトのための全天カメラを開発しました。2023年から昭和基地で4台、2025年からオーストラリアのケーシー基地とディビス基地でそれぞれ2台、フランス・イタリアのデュモン・デュルヴィル基地とコンコルディア基地でそれぞれ2台の計10台の全天カメラ観測が開始されています。
さらに、2024年から北極ノルウェーで4台のカメラの観測が、福島・飯舘観測所でも低緯度オーロラのための全天カメラ観測が開始されました。これらの総合観測から、オーロラ現象の解明を進めています。
地球大気の周りに広がっている宇宙空間「ジオスペース」には、地球大気や太陽風が起源のプラズマ(荷電粒子)が存在しています。このプラズマの中を伝わる電磁波を「プラズマ波動」と呼んでいます。
宇宙空間では粒子同士の衝突はほとんど起こりませんが、プラズマ波動と荷電粒子の「衝突」によって、粒子の運動が散乱されます。
散乱された高温の粒子が地球の大気に降り込むと、オーロラを光らせたり、高層大気の組成に影響を与えるので、プラズマ波動の発生や伝わり方を調べることは、宇宙空間と地球大気のつながりを解明する上で重要な研究です。
ジオスペース探査衛星「あらせ」によるプラズマの分布やプラズマ波動の観測、地上からのオーロラの観測などを使って、プラズマ波動がどのようにジオスペースを伝わり、高温の荷電粒子を散乱するのか調べ、宇宙空間が地球大気に及ぼす影響を研究しています。
ハレアカラT60望遠鏡で近赤外観測を実施するために、近赤外カメラTOPICSと高分散エシェル分光器(波長分解能~20000)の開発を行っています。この近赤外観測から、木星赤外オーロラやイオ火山・溶岩流出が観測できます。これとT60可視観測と組み合わせて、木星磁気圏内の物質・エネルギー輸送メカニズムの解明に取り組みます。
また、火星のトレーサーガスとなる微量気体成分(メタン・過酸化水素・HDO/H2O)を観測し、ダストストームを含む火星大気環境の物理メカニズムの理解に寄与することが期待されます。
この地上観測は、将来の木星探査機JUICEや火星探査機 MMXなどとの共同観測を行う点でも重要です。