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    Jovian quasi-periodic (QP) bursts were discovered by Voyager (Kurth et al., 1989) and named 

―Jovian Type III bursts‖ due to their dispersive spectral nature. Their occurrence characteristics 

were investigated in detail based on Ulysses’ observations. During Ulysses’ first Jovian flyby in 

1992, two kinds of QP bursts were identified (MacDowall et al., 1993): one with a periodicity of 

around 15 min during the inbound phase and the other with a periodicity of ~40 min during the 

outbound phase. They were named ―QP15‖ and“QP40‖ bursts, respectively. The Ulysses/COSPIN 

observations during the outbound pass indicated that energetic (> 9 MeV) electron outbursts with a 

40-min period were correlated with the QP40 radio bursts (McKibben et al., 1993). The Chandra 

X-ray Observatory observed an X-ray ―hot spot‖ pulsating with an approximately 45-min period 

(Gladstone et al., 2002), and it has been suggested that the emissions are excited by precipitations 

of relativistic heavy magnetospheric ions (e.g., Cravens et al., 2003; Elsner et al., 2005). These 

observations imply the relativistic particle acceleration processes in the Jovian polar region, 

accompanied by quasi-periodic radio and auroral emissions. This thesis addressed the propagation 

and generation process of quasi-periodic radio bursts. We discussed the magnetospheric dynamics 

responsible for the particle acceleration process based on the radio emission studies. The following 

conclusions were obtained in the present study. 

 

Occurrence Characteristics 

Occurrence characteristics of QP bursts were investigated based on the wave data observed by 

Ulysses at the northern high latitudes and Galileo at the low latitudes. Statistics based on the 

Ulysses’ wave data indicated that QP bursts observed at high latitudes are excited in a particular 

rotational phase (SSL=90˚–300˚) in the high latitudinal region (+30˚–+90˚). QP bursts observed at 

the low latitudes were also found to be excited in a particular rotational phase (SSL=300˚–480˚). 

Thus, it was concluded that QP bursts observed at low and high latitudes have ―clock modulations‖ 

which are internally driven in a particular rotational phase with a similar manner to the 

phenomena found in Saturn’s magnetosphere. It was also revealed that the meridional distribution 

of QP bursts forms a shadow zone in the equatorial region (|MLAT|<10˚) of less than 30 Jovian 
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radii from Jupiter where QP bursts are quenched. Statistics based on the Lomb-Scargle analysis 

indicated that the period of ―~40 min‖ is the most dominant in amplitudes at all latitudes. 

 

Polarization Properties 

Polarization properties and source directions of QP bursts were investigated based on the wave 

data observed by Ulysses at the northern high latitudes and Cassini at the low latitudes. It was 

indicated that QP bursts observed at the northern high latitudes are left-handed (LH) circular 

polarized waves (the Stokes parameters, V =+0.7–+0.8, Q =0– +0.4, and U=0–+0.2). In addition, 

statistics of the Stokes parameters confirmed that QP bursts observed at the low latitudes are also 

LH circular polarized (V =0–0.6, Q,U~0). The direction findings at the low latitudes were performed 

based on the data observed by Cassini during the closest approach to Jupiter. It was found that 

some QP bursts have arrival directions at a distance of ∼50 Rj from Jupiter with ∼20 Rj ambiguity. 

 

Interpretation of the Observation Results Based on the Ray Tracing 

We discussed the source location, directivity, and propagation process of QP bursts based on the 

ray tracing analysis, comparing with the observation results. The parametric survey suggested that 

QP bursts observed at high latitudes have the source region located at f~fp (plasma frequency) 

surface (1.3–1.4 Rj) along high-latitudinal field lines. It was suggested that these QP bursts are 

left-handed ordinary (L-O) mode waves with significantly broadened beaming patterns like a ―filled 

cone‖. On the other hand, the ray tracing suggested that QP bursts observed in the equatorial 

region are right-handed extraordinary (R-X) mode wave emitted from f~fRX (cutoff frequency of R-X 

mode) surface (~10–20Rj) along high-latitudinal field lines (L >~20). They are emitted from 

restricted L-value range with ―filled cone‖ like beaming patterns. These results imply that QP 

bursts have two kinds of sources: one has higher altitudes (fRX surface) emitting R-X mode waves 

and the other has lower altitudes (fp surface) emitting L-O mode waves. Based on the ray tracing 

with the magnetosheath plasma model, we interpreted the direction finding results by Cassini as 

meaning that QP bursts from the polar region were scattered and reached to the apparent altitudes 

(~50 Rj) by the local density fluctuations in the magnetosheath and interplanetary space, and/or 

they have the real source region in the magnetosheath. 

 

Microscopic Generation of Quasi-Periodic Bursts 

Two possible scenarios were proposed for the microscopic generation mechanism of QP bursts: 

the ―direct generation scenario‖ and ―indirect generation scenario‖ They were examined based on 

the theoretical approaches. The growth rate calculations were performed to examine the direct 

generation scenario at low (~2 Rj) and high (~10 Rj) source altitudes. The results suggested that 

free-space O mode (i.e., L-O mode) waves are directly excited by relativistic electron beams via the 

Cyclotron Maser Instability (CMI). On the other hand, it was indicated that free-space X mode 

waves (i.e., R-X mode) waves are not excited effectively. This means that the observed shadow zone 

is not formed by the R-X mode waves. Ray tracing and theoretical study suggested that the O mode 
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waves could propagate in the magnetosphere forming the observed shadow zone. The indirect 

generation scenario was examined referring to the previous theoretical study. It was concluded that 

the following mode conversion scenario is also possible at low and high source altitudes: (1) Z mode 

waves propagating toward Jupiter are excited at low and high altitudes via the cyclotron resonance, 

and (2) they are converted to free-space O mode waves at the density boundary where f~fp. The 

growth rate calculation under conditions of the magnetosheath revealed that both of the direct and 

indirect processes are unreasonable in the magnetosheath. Thus, we interpreted the direction 

finding results by Cassini as the scattering process in the magnetosheath and interplanetary space. 

 

Macroscopic Generation of QP Phenomena 

Two possible scenarios were proposed for the relativistic particle acceleration process of the 

quasi-periodic phenomena: the ―flux transfer event (FTE) scenario‖ and ―field line resonance (FLR) 

scenario‖. The two scenarios were examined based on in-situ and remote observations of plasma, 

magnetic field, and wave data performed by Galileo and Ulysses. The FTE scenario was examined 

based on observations of magnetic fields, solar wind, and QP bursts. It was confirmed that FTE 

signals at Jupiter’s magnetopause were not accompanied with periodic features similar to the QP 

phenomena. In addition, it was indicated that QP bursts do not respond significantly to any solar 

wind parameters. Thus, we concluded that the FTE scenario is not feasible for the relativistic 

particle acceleration process of QP phenomena. The FLR scenario was investigated based on the 

in-situ magnetic field data in the middle and outer magnetosphere. The results indicated that 

linear Alfven waves with a period of tens of minutes were propagating quasi-parallel with the 

background field lines in the middle magnetosphere. In addition, the Alfven waves were suggested 

to be propagating to the polar region accompanied with the relativistic electron bursts and QP radio 

bursts. Thus, we concluded that the Alfven waves propagating between the equatorial and polar 

region could be a generator of QP accelerations in the Jovian polar region.  

 

 

There still remain some unsolved problems on the Jovian QP phenomena: e.g., the internal 

initiator of the Alfven waves, ―40-min period‖, and energy budget. This thesis proposed 

observational requirements to solve these problems as concluding remarks. The observations 

should be performed based on multi-spacecraft exploration with a full set of equipments in two 

kinds of orbital regimes: the ―polar regime‖ and ―equatorial regime‖. In the polar regime, the 

exploration is performed by a spacecraft in the cusp or polar magnetopause and another spacecraft 

at the magnetic footprint in the polar region. In the equatorial regime, the exploration is performed 

by a spacecraft in the distant tail region and another spacecraft at the magnetic footprint in the 

polar region. These observations are expected to reveal the relativistic quasi-periodic acceleration 

process and relevant internal magnetospheric dynamics. 
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