Io-Jupiter interaction during Io's volcanic event in 2015

Change in on density and ion temperature derived from HISAKI

Change in Alfven transit time from Io to ionosphere

Data analysis: Derivation of brightness scale height

-

-

Fig. Image of S^{2+} emission observed by EXCEED.

The brightness scale height H_b is $\sqrt{2}$ smaller than common scale height H_i when the intensity is $\propto n_i n_e$. [Hill and Michel, 1976]

$$H_i = \sqrt{\frac{2k(T_{i\parallel} + ZiT_{e\parallel})}{3M_i\Omega^2}}$$

 M_i : mass of ion

 \varOmega : angular velocity

 Z_i : average charge state

 $T_{i||}$, $T_{e||}$: Ion and electron temperature parallel to magnetic field line

Thus, ion parallel temperature $T_{i||}$ is proportional to H_b . $T_{i||} \propto H_i^2 \propto 2H_b^2$ \rightarrow Ion parallel temperature can be derived from the

brightness scale height

- Gaussian fitting to the vertical profile (north-south, integrated along radial direction from $5 7 R_I$).
- The effect of line-of-sight integration has not excluded.

Discussion: Time variations in torus composition

Electron density (3000/cc to 4500/cc) and S+ composition increased during Io's volcanic event. T// slightly increased. Composition of major ion did not show significant change (O+, S2+)

It is expected that Alfven transit time increased at leased one-and-a-half times.

A.I.

-Detail calculation of change in Alfven transit time considering HISAKI data during the volcanic event.
-Comparison with the ExPRES analysis

torus.

Fig. (Top three panels) Time variations of plasma diagnosis derived from EXCEED data by Kagitani [2016]. (Bottom three panels) Time variations in temperature of sulfur ions (SII, SIII, and SIV) derived from EXCEED data.

Shishido et al. JPGU2017 poster