Electrons on closed field lines of lunar crustal fields in the solar wind wake

17 February 2015
Symposium on Planetary Science 2015, Tohoku University

Masaki N. Nishino1, Yoshifumi Saito2, Hideo Tsunakawa3, Futoshi Takahashi4, Masaki Fujimoto2, Yuki Harada5, Shoichiro Yokota2, Masaki Matsushima3, Hidetoshi Shibuya6, Hisayoshi Shimizu7

1Nagoya Univ 2JAXA 3Tokyo TECH 4Kyushu Univ 5SSL/UCB 6Kumamoto Univ 7ERI, Univ Tokyo
Lunar crustal magnetic fields

<table>
<thead>
<tr>
<th>Alt.</th>
<th>effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 km</td>
<td>1-2 nT</td>
</tr>
<tr>
<td>30 km</td>
<td>~20 nT</td>
</tr>
<tr>
<td>surface</td>
<td>~300 nT</td>
</tr>
</tbody>
</table>

Lunar radius = 1738 km

Scale of magnetized area ~ 100-1000 km
(Smaller than Mars’)

Kaguya L Maggie 30 km alt.

SPA (South Pole - Aitken) basin

Crisium Antipode

Cf. Interplanetary magnetic field at 1 AU ~ several nT
More than 80% of time ...

- The moon stays in the solar wind
 - interaction between SW and the Moon

- Why important?
 - Wake formation behind the moon
 - Plasma refilling into the wake
 - Particle/dust acceleration
 - Hazardous in future missions
 - Space plasma and planetary surface
 - no thick atmosphere
 - no intrinsic magnetic field

- Solar wind
- Moon
- Lunar orbit
- Sun
- Dawn
What happens in the solar wind wake?

- Plasma cavity? (Cavity in the plasma void?)
- Mini-magnetosphere filled with plasma?

What happens here? Cavity or mini-magnetosphere?

Dyal et al. Nature 1972
Previous observations (Lunar Prospector)

- An enhancement in the magnetic field magnitude over the CA anomaly
- Decrease in the electron flux in the vicinity of the CA anomaly

(Halekas+2008 PSS)
Our data

- Kaguya (SELENE) observations
- PACE+LMAG
- 14-15 km over Crisium Antipode
- Longitude = 126° in SSE (night side)

- 80 nT, 0.1 keV $\Rightarrow r_{e_{\text{gyro}}} = 0.42$ km
SELENE orbit (1h)

14-15 km over Crisium Antipode

Longitude = 126° in SSE
Plasma and magnetic field over CA

Alt: 14-15 km over CA
- High electron flux
- Large variation in B
Enhancement of electron flux (21:37 UT)

Magnetic field and electron flux enhance.

ESA-S2
(incl. downward-going e-)

double loss cones
in the medium energy range
→ closed magnetic fields

ESA-S1
(incl. upward-going e-)
typical upward beams in the wake
field-aligned beams in the low energy range

15 km alt. over CA in the wake

Large variation in magnetic field direction along the orbit
⇒ Need to investigate high-resolution data
Bi-directional low-energy beams

Electron data at each energy are obtained for 0.5 sec

ESA-S2 (incl. downward-going e-)

ESA-S1 (incl. upward-going e-)

Closed magnetic field

<table>
<thead>
<tr>
<th>beam energy</th>
<th>data period</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>38 eV</td>
</tr>
<tr>
<td>S2</td>
<td>41 eV</td>
</tr>
<tr>
<td></td>
<td>21:37:17.5-21:37:18.0</td>
</tr>
</tbody>
</table>
Loss cone angle

- 300 nT at the footprints, 80 nT at 15 km altitude
- Loss-cone angle (at 15 km alt.) = 31 degrees
- Double loss-cone in the middle energy range
- Electron beams in the loss-cone angle are fresh electrons from the lunar night side surface

\[\frac{B_0}{B_M} = \sin^2 \theta \]
Electron energy flux (about 100 eV)

Solar wind: 10^7

dayside cavity est. 10^6 (*1)

captured in wake: $10^{5.5-6}$

typical wake: $10^{4.5-5}$

cavity in wake: $<10^4$

*1 An order-of-magnitude density drop near the terminator (SZA~81 deg) (Halekas+2008, PSS)
Gradient B drift

- \(\text{grad } \mathbf{B} = 10 \text{ nT/km} \)
- 100 eV electron
- Gradient drift speed of 100 km/s
- Quick loss into the lunar surface
- *How are electrons there? Supply??*

\[
V_d = \left(\frac{\varepsilon_\perp}{qB^3} \right) \left(B \times \nabla B \right)
\]

\[
\varepsilon_\perp = \frac{1}{2} m v_\perp^2
\]
Summary & Discussion

• Trapped electrons 15 km over CA anomaly in the wake
• Bi-directional low-energy electron beams (<100eV)
• Double loss cones (medium energy)
 → Closed magnetic fields

• Loss into lunar surface by grad B drift at 100 km/s
• How are hot electrons supplied to the closed field lines?
 – Do electrons move around the surface to come to CA?
 – Direct supply of SW electrons along Parker-spiral IMF?

• What can we see at different altitudes (e.g. 50 km)?
• Comparison between observed and model fields